0=(3x^2-5x-3)/(x^2-9)

Simple and best practice solution for 0=(3x^2-5x-3)/(x^2-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(3x^2-5x-3)/(x^2-9) equation:


D( x )

x^2-9 = 0

x^2-9 = 0

x^2-9 = 0

1*x^2 = 9 // : 1

x^2 = 9

x^2 = 9 // ^ 1/2

abs(x) = 3

x = 3 or x = -3

x in (-oo:-3) U (-3:3) U (3:+oo)

0 = (3*x^2-(5*x)-3)/(x^2-9) // - (3*x^2-(5*x)-3)/(x^2-9)

0-((3*x^2-(5*x)-3)/(x^2-9)) = 0

-((3*x^2-5*x-3)/(x^2-9)) = 0

(-1*(3*x^2-5*x-3))/(x^2-9) = 0

3*x^2-5*x-3 = 0

3*x^2-5*x-3 = 0

DELTA = (-5)^2-(-3*3*4)

DELTA = 61

DELTA > 0

x = (61^(1/2)+5)/(2*3) or x = (5-61^(1/2))/(2*3)

x = (61^(1/2)+5)/6 or x = (5-61^(1/2))/6

(x-((5-61^(1/2))/6))*(x-((61^(1/2)+5)/6)) = 0

(-1*(x-((5-61^(1/2))/6))*(x-((61^(1/2)+5)/6)))/(x^2-9) = 0

( -1 )

-1 = 0

x belongs to the empty set

( x-((5-61^(1/2))/6) )

x-((5-61^(1/2))/6) = 0 // + (5-61^(1/2))/6

x = (5-61^(1/2))/6

( x-((61^(1/2)+5)/6) )

x-((61^(1/2)+5)/6) = 0 // + (61^(1/2)+5)/6

x = (61^(1/2)+5)/6

x in { (5-61^(1/2))/6, (61^(1/2)+5)/6 }

See similar equations:

| 34kg=mg | | 56-2r=2 | | 8x=2x*2 | | 4f-11=1 | | 2x-(4-3x)=8 | | e^4x-7*e^3x=105 | | 16a^4-b^4=0 | | 6(x+5)=-3 | | 2x+15=3x^2 | | 15-u=200 | | 2x-1=96 | | (2x-5)-5=4+5 | | 2(1+3)=8 | | 4.00+0.50n= | | 139-y=218 | | 4r^2-12r+25=0 | | 170=38-v | | 3(x+4)=6(x+2) | | 4v-14=22 | | 8+18s-3=9s+109-4s | | 60-222= | | x^2+2xy+y^2+10=0 | | B+4=2(5-b) | | -18=2(u-6) | | 3(w-87)=33 | | sin70=85/n | | 6(j-84)=90 | | ((1-4t^2)/(t^2))(t/(1-t)) | | 7z-2z=-20 | | 8x-5=4+7x | | q=22-.5(20-.5q) | | 2+3(y-1)=23 |

Equations solver categories